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IMAGE MODELING AND ENHANCEMENT VIA STRUCTURED SPARSE MODEL SELECTION

Guoshen Yu†, Guillermo Sapiro†, and St́ephane Mallat‡

†ECE, University of Minnesota ‡CMAP, Ecole Polytechnique

ABSTRACT

An image representation framework based on structured sparse model
selection is introduced in this work. The corresponding modeling
dictionary is comprised of a family of learned orthogonal bases. For
an image patch, a model is first selected from this dictionarythrough
linear approximation in a best basis, and the signal estimation is then
calculated with the selected model. The model selection leads to a
guaranteed near optimal denoising estimator. The degree offree-
dom in the model selection is equal to the number of the bases,typ-
ically about 10 for natural images, and is significantly lower than
with traditional overcomplete dictionary approaches, stabilizing the
representation. For an image patch of size

√
N×

√
N, the computa-

tional complexity of the proposed framework isO(N2), typically 2
to 3 orders of magnitude faster than estimation in an overcomplete
dictionary. The orthogonal bases are adapted to the image ofinterest
and are computed with a simple and fast procedure. State-of-the-art
results are shown in image denoising, deblurring, and inpainting.

Index Terms— Model selection, structured sparsity, best basis,
denoising, deblurring, inpainting

1. INTRODUCTION
Image enhancement problems, such as denoising, deblurringand
inpainting, are typical and important tasks in image processing. Es-
timation in sparse representations provides a powerful tool for such
image enhancement tasks. State-of-the-art image enhancement re-
sults have been recently obtained with learned overcomplete dictio-
naries and sparse coding over them [1, 6, 14]. In these approaches,
overcomplete local dictionaries are learned from the images, and the
image enhancement is performed through estimation (sparsecod-
ing) in the resulting overcomplete sparse image representations.

Sparse signal estimation in an overcomplete dictionary is sub-
ject to an exponentially large degree of freedom. Calculating such
estimation is not only computationally demanding, the resulting es-
timate is also likely to be unstable [2, 8], which may deteriorate the
image enhancement results [15].

In this paper, we introduce a novel image representation frame-
work, namely structured sparse model selection (SSMS). Thedic-
tionary is comprised of a family of learned orthogonal bases. For a
given image patch, a model is selected through linear approximation
in a best basis, over which the signal estimation is then calculated.
The model selection leads to a guaranteed near optimal denoising
estimator. The degree of freedom in the model selection is equal to
the number of the bases, typically about 10 for natural images, sig-
nificantly reduced with respect to the traditional overcomplete dic-
tionary approaches, and thereby stabilizing the representation. For
an image patch of size

√
N×

√
N, signal estimation with SSMS is

calculated with a complexityO(KMN), whereK andM are respec-
tively the number of the bases and the linear approximation dimen-
sion, whose typical values lead to a complexity inO(N2), 2 to 3
orders of magnitude faster than estimation in an overcomplete dic-
tionary. The orthogonal bases are adapted to the image of interest
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and are computed with a simple and fast procedure. State-of-the-art
results are shown in image denoising, deblurring and inpainting.

2. STATE-OF-THE-ART ON IMAGE ENHANCEMENT
State-of-the-art image enhancement is obtained by sparse coding
image patches with learned overcomplete dictionaries [6, 14]. Im-
ages are decomposed into overlapping patchesf ∈R

N, where
√

N×√
N is the patch size. A patch is assumed to be sparsely represented

in an overcomplete dictionaryD = {φm}m∈Γ, with |Γ| ≥ N:
f = fΛ +wΛ with fΛ = ∑

m∈Λ
a[m]φm, (1)

where the approximation error‖wΛ‖2 ≪ ‖ f‖2 and |Λ| ≪ |Γ|. A
sparse approximatioñf = ∑m∈Λ̃ ã[m]φm of f is calculated with, for
example, an orthogonal matching pursuit that approximatesan l0

solution [18] or with anl1 minimization [5] that calculates
ã= argmin

a
‖ f − ∑

m∈Γ
a[m]φm‖2+λ‖a‖1. (2)

Given an image patch data set{ fi}1≤i≤I with I ≫ N, the dic-
tionary D = {φm}m∈Γ is learned by solving the following mini-
mization, so that it provides sparse representations for all the image
patches,

min
{φm}m∈Γ,{ai}i=1,...,I

I

∑
i=1

‖ fi − ∑
m∈Γ

ai [m]φm‖2+λ‖ai‖1. (3)

The minimization (3) is typically non-convex and a local solution is
calculated with an iterative procedure, e.g., the K-SVD [1].

Fig. 1. Sparse signal models. Left: the overcomplete dictionary model. In
this model any sparse set of atoms (columns in gray) can be selected. Right:
the structured sparse model selection model. In this model,the dictionary
is comprised of a family of orthogonal bases, only one selected at a time.
The model selection is calculated with linear approximation in a best basis,
i.e., only the first few atoms of one basis (in gray) can be selected.

3. STRUCTURED SPARSE MODEL SELECTION
The underlying signal model of the overcomplete dictionaryap-
proach, as depicted in Fig. 1, is that an image patchf ∈ R

N can be
accurately approximated with a few atoms{φm}m∈Λ in an overcom-
plete dictionaryD = {φm}m∈Γ with |Γ| ≥ N ≫ |Λ|. To approximate

f with |Λ| atoms in the dictionary, the degree of freedom

(

|Γ|
|Λ|

)

in

selecting the atoms is exponentially large (∼ 1014 for typical val-
uesN = 64, |Γ|= 256,|Λ|= 8), which may lead to unstable signal
estimation [2]. It has been shown that thel1 minimization achieves
more stable recovery of the supportΛ̃ thanl0 [13]. However, reliable
signal estimation requires further stabilization [8, 15].Attempting
to exploit all the possibilities, the approximation (1) is computed
via an iterativel1 minimization procedure (2), that has a relatively
high computational complexity,O(L|Γ|N), whereL is the number
of iterations typically in the order of 102 to 103.

Putting structure in sparsity stabilizes the estimation [8]. In this
section, we introduce a structured sparse model selection (SSMS)
signal model that reduces tremendously the degree of freedom as
well as the computational complexity in signal estimation,and on
the top of that, provides state-of-the-art image enhancement results.



3.1. Structured sparse model
As illustrated in Fig. 1, SSMS is defined with a dictionary comprised
of K sub-dictionariesD = {Bk}1≤k≤K, eachBk = {φk

m}1≤m≤N be-
ing an orthogonal basis. An image patchf ∈ R

N is assumed to be
accurately approximated with a linear approximation in a best or-
thogonal basis indexed byk0

f = f k0
M +wk0

M with f k0
M =

M

∑
m=1

〈 f ,φk0
m 〉φk0

m , (4)

where the linear approximation error‖wk0
M‖2 ≪‖ f‖2 andM ≪ N is

the linear approximation dimension.
Compared with the overcomplete dictionary model (1), the SSMS

model (4) is much more structured and the structure comes from
two concepts. First, the estimation in the best orthogonal basis ex-
cludes the possibility to select atoms across the bases, which shrinks

the degree of freedom in atom selection from

(

KN
M

)

to K

(

N
M

)

.

Second, the linear approximation in each basis further reduces the
degree of freedom to justK, stabilizing the encoding and reducing
the computational cost.

3.2. Structured model selection
The best basisBk0 in (4) is computed by maximizing the projection
energy on{φk

m}1≤m≤M over all the orthogonal basesBk ∈ D :

k0 = arg max
k=1,...K

‖ f k
M‖2 = arg max

k=1,...K

M

∑
m=1

|〈 f ,φk
m〉|2. (5)

The model selection (5) has a degree of freedomK and is calculated
with a complexityO(KMN). With the typical valuesN= 64,M = 8,
K = 18 as we will see in Section 3.3, the model selection complexity
is O(N2).

The following theorem shows that when the true original signal
is contaminated by a Gaussian white noisew,

y[n] = f [n]+w[n] for 1≤ n≤ N, (6)

the empirical model selection leads to a near optimal denoising es-
timator whose risk is upper bounded by 4 times the best estimation
obtained with an oracle.

Theorem 1. Let σ2 be the noise variance and T= λ σ
√

loge(KN)

with λ ≥
√

32+ 8
loge(KN) . For any f ∈ R

N, the empirical model

selection

k0 = arg max
k=1,...K

‖yk
M‖2 = arg max

k=1,...K

M

∑
m=1

|〈y,φk
m〉|2 (7)

yields a linear projection estimator

f̃ =
M

∑
m=1

〈y,φk0
m 〉φk0

m , (8)

of f , which satisfies

E
[

‖ f̃ − f‖2]≤ 4 min
k=1,...,K

(

‖ f − f k
M‖2+T2M

)

+
32σ2

KN
, (9)

where fkM = ∑M
m=1〈 f ,φk

m〉φk
m.

Theorem 1 is derived from the general model selection resultof
Barron, Birgé and Massart [3], which shows that the projector es-
timator over the best empirical set in an overcomplete dictionary is
near optimal. Assuming linear approximation in a best orthogonal
basis, the structured sparse model selection (7) is computed calcu-
lating the linear projection energy in each basis, and enjoys the ad-
vantage of being free of the thresholding parameterT, on contrast
to [3].

3.3. Bases design
The orthogonal bases{Bk}1≤k≤K are initialized with Principal Com-
ponents Analysis (PCA) over synthetic contour images. Based on
the model selection, they are then adapted to the image of interest
by applying PCAs again over that image.
3.3.1. Directional bases initialization

Fig. 2. The first 8 atoms inBk with θk = 30◦.
As shown in [1], the most prominent atoms in a learned over-

complete dictionary look like edge patterns. In order to capture di-
rectional patterns, the orthogonal bases in SSMS are initialized by
computing PCAs over synthetic contour images of various orienta-
tions, one basis for each orientation. At the orientationθk, synthetic
contours with different amount of blur are created. Image patches
{ fi}i=1,...,I of size

√
N×

√
N touching the contours at different lo-

cations are collected. The orthogonal basisBk is obtained by calcu-
lating PCA over these patches.

The eigenvalues of the dictionary atoms decrease rapidly and
become negligible after about the

√
N-th atom. As shown in Fig. 2,

the first about
√

N = 8 atoms oscillate in the direction orthogonal to
θk from low- to high-frequency and are quasi-constant inθk. Other
atoms that complete the orthogonal basis look unmeaningful. The
orientationθk is uniformly sampled from 0◦ to 180◦, typically with
a step of 10◦, which results inK = 18 orthogonal bases.

In order to better capture more complex texture patterns, a DCT
basis is added to the dictionaryD .
3.3.2. Bases adapted to image
The bases are adapted to the image of interest by applying thePCAs
over the image patches, grouped following the model selection. The
structured model selection with the directional bases introduced above
assigns a modelk to each patch. The basisBk, with 1≤ k ≤ K, is
adapted to the image by recalculating the PCA with all the image
patches that have been assigned to the modelk.
3.4. Best basis estimation
The signal estimation is calculated with a non-linear thresholding
estimator in the best basisBk0

f̃ = ∑
m∈Λ

〈y,φk0
m 〉φk0

m , (10)

whereΛ = {m : |〈y,φk0
m 〉| > T}. In effect, the non-linear estimation

typically improves the estimate with respect to the linear estima-
tor (8), as the former is more robust to the signal model error.

4. EXPERIMENTAL RESULTS & CONCLUSIONS
4.1. Denoising
4.1.1. Gaussian white noise removal
We first tested on images corrupted with Gaussian white noiseof
varianceσ2. The SSMS denoising is conducted with patches of size
8× 8, M = 8, K = 18 andT = 3σ . Table 1 summarizes its per-
formance in comparison with the learned overcomplete dictionary
(LOD) [6], the Non-Local Means (NLmeans) [4], and the Gaus-
sian Scale Mixtures (GSM) [17]. The results of LOD and GSM are
quoted from [6, 17], and those of NLmeans are produced with the
code from Buades [4]. SSMS, with a much smaller computational
complexity, generates the highest PSNRs in most cases. Its gain on
Barbara, rich in geometrical texture, is particularly significant. An
example illustrated in Fig. 3 shows that the SSMS denoising restores
some very fine patterns.

1The experimental results are available at
http://www.cmap.polytechnique.fr/∼yu/research/ASIFT/demo.html.



σ / PSNR Lena Barbara House Boat

5/34.15
37.35 38.49 36.95 37.79 37.85 38.65 35.15 36.97

38.60 38.62 38.08 38.73 39.37 39.51 37.22 37.09

10/28.13
34.86 35.61 34.28 34.03 35.39 35.35 32.65 33.58

35.47 35.63 34.42 35.11 35.98 36.13 33.64 33.70

20/22.11
31.47 32.66 30.10 30.32 32.45 32.39 29.25 30.38

32.38 32.30 30.83 31.25 33.20 32.77 30.36 30.40

Table 1. Denoising performance (in PSNR). Top left: NLmeans [4]. Top
right: GSM [17]. Bottom left: learned overcomplete dictionary [6]. Bottom
right: the proposed SSMS denoising. In each set the best result is in bold.

Original Noisy 28.09 dB SSMS denosing 34.56 dB

Fig. 3. Denoising. From left to right: a cropped region from Lena, noisy
version (σ = 10) , the proposed SSMS denoising.

4.1.2. Gaussian colored noise removal — deblurring
In these experiments, the clean imagef is blurred and contaminated
by a Gaussian white noisew

y[n] = ( f ∗h)[n]+w[n] for 1≤ n≤ N, (11)

wherey is the observed image andh is the blurring kernel that is
assumed to be known. Deblurring aims at estimatingf from y.

The deblurring can be casted to a denoising problem by first
making a pseudo-inverse ofh in the Fourier domain with a Wiener
filter, and then removing the Gaussian colored noise amplified by
the Wiener filtering [16].

The SSMS deblurring is compared with the popular ForWaRD
algorithm [16]. The same Wiener filter is applied in both meth-
ods. While the proposed SSMS deblurring proceeds the denoising
with the SSMS model, ForWaRD denoises by translation-invariant
wavelet shrinkage. A Monte Carlo procedure is applied for both
methods to estimate the Gaussian colored noise variance on each
coefficient. As summarized in Table 2, the SSMS deblurring im-
proves on average about 0.7 dB in PSNR over ForWaRD. An ex-
ample illustrated in Fig. 4 shows that the SSMS deblurring removes
more effectively the colored noise and better restores fine patterns.
Since the two methods apply the same Wiener filter, they achieve
the same amount of deblurring, which will be further improved by
the super-resolution deblurring described in Section 4.2.2.

σb/σn Lena Cameram. House Boat

1 / 5
33.13 33.95 27.18 27.78 32.35 33.13 29.98 30.66

33.18 34.21 27.09 27.96 32.31 33.65 30.22 30.83

2 / 5
31.17 31.95 24.51 24.63 30.31 30.87 27.84 28.22

31.31 32.11 25.01 25.02 30.99 31.95 28.23 28.38

Table 2. Deblurring performance (in PSNR). The left column specifiesthe
std of the Gaussian blur kernelσb and of the Gaussian white noiseσn. Top
left: ForWaRD [16]. Top right: the proposed SSMS deblurring(Sec 4.1.2).
Bottom left: DSD [11]. Bottom right: the proposed SSMS super-resolution
deblurring (Sec 4.2.2). In each set the best result is in bold.

4.2. Inverse Problems
Image enhancement often requires to solve an inverse problem, which
amounts to estimate an imagef in a space of larger dimension than

Original Blurred, noisy 20.61 dB ForWaRD 20.69 dB SSMS 21.34dB

Fig. 4. Deblurring. From left to right: a cropped region from Barbara,
blurred and noisy version, ForWaRD [16], the proposed SSMS deblurring.

that of the degraded imagey obtained through a linear operatorU ,
and further contaminated by an additive noisew:

y[n] =U f [n]+w[n] for 1≤ n≤ N. (12)
The deblurring addressed in Section 4.1.2 is a classical inverse prob-
lem, whereU is a convolution operator.

Given a dictionaryD = {φm}m∈Γ that provides a sparse rep-
resentation for the original imagef (1), the degraded imagey is
sparsely represented in the transformed dictionaryDU = {Uφm}m∈Γ:

y= yΛ +w′ with yΛ = ∑
m∈Λ

a[m]Uφm, (13)

wherew′ =UwΛ+wand‖w′‖2 ≪‖y‖2. The sparse super-resolution
approach [7, 11] seeks to estimate the coefficients ˜a and the support
Λ̃ = {m : ã[m] 6= 0} of f from the degraded signaly:

ã= argmin
a

‖y− ∑
m∈Γ

a[m]Uφm‖2+λ‖a‖1. (14)

The resulting sparse super-resolution estimate off is
f̃ = ∑

m∈Λ̃
ã[m]φm. (15)

In addition to the sparse representation requirement onD , the
following conditions, not addressed in [7, 11], are necessary for a
high-quality super-resolution estimatef̃ [15]:

• Recoverability. ‖Uφm‖2 ≫ 0,∀m∈ Λ.
• Stability. DU = {Uφm}m∈Γ should beincoherentenough.

While the first condition suggests therecoverabilityof the support
Λ from y, the second condition implies thestability of the support
estimate. It has recently been shown that imposing structure in the
estimation essentially stabilizes the estimate [2, 15].

The SSMS model enjoys the advantage of being highly struc-
tured. Instead of solving (14), SSMS calculates for eachBk ∈ D

ãk = argmin
a

ek = argmin
a

‖y−
M

∑
m=1

a[m]Uφk
m‖2+λ‖a‖1. (16)

The best basis is obtained with
k0 = arg min

k=1,...,K
ek
. (17)

The sparse super-resolution (14) and (15) is then calculated with the
best basisBk0.
4.2.1. Super-resolution inpainting
Inpainting aims at estimatingf from y in (12), whereU is a binary
random mask on the image andw is typically neglected. The SSMS
inpainting is calculated with patches of size 8×8, M = 8 andK =
18. Thel1 minimization is calculated via a weighted Lasso with
the LARS algorithm [12]. Table 3 summarizes the SSMS inpainting
results, in comparison with the EM [9] and the MCA [7] algorithms
that utilize a dictionary comprised of a curvelet frame and alocal
DCT, as well as with [10] that utilizes a local DCT. The results of
MCA and EM are produced with the authors’ softwares [7, 9]. [10]
is a degenerated case of SSMS consisting of only one basis that is
the DCT. The SSMS inpainting generates the highest PSNRs in all
cases. When the masking percentage becomes important at 60%, the
highly structured SSMS model significantly outperforms thesecond
best algorithm by more than 2 dB in PSNR. As illustrated in Fig5,
the SSMS inpainting accurately restores the image geometryfrom a
very heavily masked image.



masked/PSNR Lena Barbara House Boat

30%/10.14
40.32 33.40 38.56 32.46 41.95 33.57 37.33 31.34

38.53 40.76 38.95 40.70 40.67 43.00 36.17 37.69

60%/7.11
33.43 29.91 29.77 28.52 34.10 29.56 30.40 27.58

33.95 36.02 32.33 34.50 35.23 37.41 31.00 32.53

Table 3. Inpainting performance (in PSNR). Top left: [10]. Top right:
EM [9]. Bottom left: MCA [7]. Bottom right: the proposed SSMSinpaint-
ing. In each set the best result is in bold.

Original Masked 6.30 dB SSMS inpainting 36.63 dB

Fig. 5. Inpainting. From left to right: a cropped region from Lena,60%
randomly masked version, the proposed SSMS inpainting.

4.2.2. Super-resolution deblurring

Super-resolution deblurring has the capacity to restore image pat-
terns at frequencies eliminated by the convolution operatorU , which
is impossible with the Wiener filtering approach described in Sec-
tion 4.1.2. The SSMS super-resolution deblurring is calculated with
a hierarchy of two families of orthogonal bases.

The directional bases introduced in Section 3.3.1 do not have
super-resolution deblurring ability since they do not satisfy there-
coverability condition described above. Indeed these oscillatory
atoms, as illustrated in Fig. 2, have Dirac supports in Fourier and
can be therefore killed after the convolution. Following the hier-
archical sparse decomposition scheme decoupling orientation and
position introduced in [19], a family of orthogonal bases that speci-
fies the edge position in the patch is cascaded with each directional
basis of the corresponding orientation. The atoms in the position
bases are localized around the underlying position, and thus have
spread spectrum in Fourier as required by therecoverabilitycondi-
tion. The position bases are computed with the PCA procedurein
the same way as described in Section 3.3.1, for each basis thetrain-
ing patches being extracted at a fixed position from the synthetical
contour images. Two basis selections (17) are cascaded in the hi-
erarchy: the first selects the best direction basis and, given the best
orientation, the second selects the best position basis. The sparse
super-resolution deblurring is then calculated with the best position
basis in the selected direction.

The SSMS super-resolution deblurring is conducted with patches
of size 12×12,M = 20 andK = 18. Thel1 minimization is calcu-
lated via a weighted Lasso with the LARS algorithm [12]. The patch
boundary issue is treated in the same way as in [11]. Table 2 sum-
marizes the performance of the SSMS super-resolution deblurring,
in comparison with ForWaRD, the SSMS deblurring (without super-
resolution), and the direct sparse deconvolution (DSD) [11].1 The
SSMS super-resolution deblurring generates the highest PSNRs in
all cases, followed by the SSMS deblurring. As its gain with respect
to the latter lies essentially on edges that take a small proportion in
the image, the PSNR improvement over the whole image is not sig-
nificant. However, the visual benefit is substantial. As illustrated in

1We thank very much Yifei Lou for kindly making the DSD experiments.

Fig. 6, the super-resolution deblurring restores sharper edges than
the SSMS deblurring without super-resolution described in4.1.2.

Original Blurred, noisy 23.97 dB SSMS 26.08 dB SSMS SR 27.60 dB

Fig. 6. Deblurring. From left to right: a cropped region from Cameraman,
blurred and noisy version, the proposed SSMS deblurring (without super-
resolution) and the proposed SSMS super-resolution deblurring.

To conclude, let us mention that we are currently extending this
work to color image modeling and enhancement.
Acknowledgements: The authors would like to thank Michael Elad, and
Jean-Michel Morel for the inspiring discussions.
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